232 research outputs found

    Andreev-like reflections with cold atoms

    Get PDF
    We propose a setup in which Andreev-like reflections predicted for 1D transport systems could be observed time dependently using cold atoms in a 1D optical lattice. Using time-dependent density matrix renormalization group methods we analyze the wave packet dynamics as a density excitation propagates across a boundary in the interaction strength. These phenomena exhibit good correspondence with predictions from Luttinger liquid models and could be observed in current experiments in the context of the Bose-Hubbard model

    Fractional Wigner crystal in the helical Luttinger liquid

    Full text link
    The properties of the strongly interacting edge states of two dimensional topological insulators in the presence of two particle backscattering are investigated. We find an anomalous behavior of the density-density correlation functions, which show oscillations that are neither of Friedel nor of Wigner type: they instead represent a Wigner crystal of fermions of fractional charge e/2, with e the electron charge. By studying the Fermi operator, we show that the state characterized by such fractional oscillations still bears the signatures of spin momentum locking. Finally, we compare the spin-spin correlation functions and the density-density correlation functions to argue that the fractional Wigner crystal is characterized by a non trivial spin texture.Comment: 5 pages, 2 figure

    Fractional charge in the noise of Luttinger liquid systems

    Full text link
    The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic leads is computed in presence of an impurity in the wire. We find that in the weak backscattering limit the Fano factor characterizing the ratio between shot noise and backscattering current crucially depends on the noise frequency relative to the ballistic frequency v_F/gL, where v_F is the Fermi velocity, g the Luttinger liquid interaction parameter, and L the length of the wire. In contrast to chiral Luttinger liquids, the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles at the impurity, but also depends on Andreev-type reflections of plasmons at the contacts, so that the frequency dependence of the noise needs to be analyzed to extract the fractional charge e*=e g of the bulk excitations. We show that the frequencies needed to see interaction effects in the Fano factor are within experimental reach.Comment: 9 pages, 4 figures, conference proceedings of Fluctuations and Noise 2005, Austin, Texa

    Entangled microwave photons from quantum dots

    Get PDF
    We describe a mechanism for the production of polarisation-entangled microwaves using intra-band transitions in a pair of quantum dots. This proposal relies neither on spin-orbit coupling nor on control over electron-electron interactions. The quantum correlation of microwave polarisations is obtained from orbital degrees of freedom in an external magnetic field. We calculate the concurrence of emitted microwave photon pairs, and show that a maximally entangled Bell pair is obtained in the limit of weak inter-dot coupling.Comment: 4 pages, 5 figure

    Appearance of fractional charge in the noise of non-chiral Luttinger liquids

    Get PDF
    The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic leads is computed in presence of an impurity in the wire. We find that in the weak backscattering limit the Fano factor characterizing the ratio between noise and backscattered current crucially depends on the noise frequency ω\omega relative to the ballistic frequency vF/gLv_F/gL, where vFv_F is the Fermi velocity, gg the Luttinger liquid interaction parameter, and LL the length of the wire. In contrast to chiral Luttinger liquids the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles at the impurity, but also depends on Andreev-type reflections at the contacts, so that the frequency dependence of the noise needs to be analyzed to extract the fractional charge e∗=ege^*=e g of the bulk excitations.Comment: 4 pages, 2 figures, final version, to appear in PR

    Spin Hall effect at interfaces between HgTe/CdTe quantum wells and metals

    Full text link
    We study the spin-dependent transmission through interfaces between a HgTe/CdTe quantum well (QW) and a metal - both for the normal metal and the superconducting case. Interestingly, we discover a new type of spin Hall effect at these interfaces that happens to exist even in the absence of structure and bulk inversion asymmetry within each subsystem (i.e. the QW and the metal). Thus, this is a pure boundary spin Hall effect which can be directly related to the existence of exponentially localized edge states at the interface. We demonstrate how this effect can be measured and functionalized for an all-electric spin injection into normal metal leads.Comment: 7 pages, 6 figure

    Optimal spin-entangled electron-hole pair pump

    Get PDF
    A nonperturbative theory is presented for the creation by an oscillating potential of spin-entangled electron-hole pairs in the Fermi sea. In the weak potential limit, considered earlier by Samuelsson and Buttiker, the entanglement production is much less than one bit per cycle. We demonstrate that a strong potential oscillation can produce an average of one Bell pair per two cycles, making it an efficient source of entangled flying qubits.Comment: 6 pages including 1 figure -- Two appendices contain material that is not in the Journal version: A) Gaussian elimination for fermions; B) class of optimal pump cycle

    Photon-assisted electron transport in graphene

    Full text link
    Photon-assisted electron transport in ballistic graphene is analyzed using scattering theory. We show that the presence of an ac signal (applied to a gate electrode in a region of the system) has interesting consequences on electron transport in graphene, where the low energy dynamics is described by the Dirac equation. In particular, such a setup describes a feasible way to probe energy dependent transmission in graphene. This is of substantial interest because the energy dependence of transmission in mesoscopic graphene is the basis of many peculiar transport phenomena proposed in the recent literature. Furthermore, we discuss the relevance of our analysis of ac transport in graphene to the observability of zitterbewegung of electrons that behave as relativistic particles (but with a lower effective speed of light).Comment: 5 pages, 2 figure
    • …
    corecore